Journal of Computational Physié$2,483-513 (2000)

®
doi:10.1006/jcph.2000.6549, available online at http://www.idealibrary.col DE &l.

Loading and Injection of Maxwellian
Distributions in Particle Simulations?

K. L. Cartwright* J. P. Verboncoeurand C. K. Birdsalf

*Air Force Research Laboratory, Kirtland AFB, New Mexico 87117-5776; {dldctronics Research
Laboratory, University of California, Berkeley, California 94720

Received December 21, 1999; revised May 5, 2000

Existing and new particle loading and injection algorithms for particle simulations
are analyzed to determine numerical accuracy and computational efficiency. Empha-
sis has been placed on loading and emission of Maxwellian, drifting Maxwellian,
and cutoff Maxwellian velocity distributions. Once a velocity distribution has been
inverted for loading or injection, time-centering of the position and velocity is neces-
sary in order to maintain second-order accuracy. Here, the accuracy of these methods
is determined and compared to three analytic test cases with spatially varying, time-
dependent, and time-independent electric fields in a homogeneous magnetic field
and a self-consistent crossed-field diode. The initial push is shown to be important
in calculating the correct electric field at the boundary where particles are injected,
in relaxing constraints on the time step, and in providing reliable field fluctuations
due to particle statistics.© 2000 Academic Press

1. INTRODUCTION

We first observed injection difficulties when detailed comparisons were made betw
1d and 2d diodes [1-3] when using common particle loading and injection algorithms. T
phase space plots (position-velocity; Fig. 1) showed incorrect velocities with small ge
(incorrect position) in emission. The culprit was initiating the leap-frog integrator wit
velocity, v, and positionx, at the same time; andx should beAt /2 apart in time in order
to obtain second-order accuracy. The result of not time-centering the velocity and posi
correctly was a zero-order error in each emitted particle.

For some models, this error might have a small or unnoticeable effect on the simulat
However, in models we were (and are) studying for noise and stability in cross field devic
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FIG. 1. The particle phase space near the cathode emitter in equilibrium with the critical current injected
the zero-order injection model and the new second-order accuracy injection method.

these errors were unacceptable. Hence, the choice was to devise a second-order ac
method to start the leap-frog integrator.

The initial conditions of the particle distribution functiom(x, v, t = 0), wherex, v,
andt are the position, velocity, and time, respectively, are important in determining tl
later behavior of the system, especially for the study of transients or instabilities. T
distribution function continues to be important for simulations with collisions using Mont
Carlo collision (MCC) packages, but the emphasis here is long time (longer than an
transit time) scale developments. The boundary condition of the particle distribéitiors
wall, v, t) (for example, thermionic, field, or secondary emission), which may be a functic
of time, is also important in determining the continuing behavior of the system. The
considerations are especially important for modeling diodes [4], electron guns [5], cross
field emission [4, 6, 7], multipactor breakdown [8], and any time particle emission is near
space charge limit[9]. Incorrect loading and injection can often manifestitselfin nonobvio
ways, such as larger than expected field fluctuations; this will be discussed in detail lat

Chapter 16 of Birdsall and Langdon [10] discusses some methods in wide use for inver
densities ) and f{) as well as the particle flud; = v, f(x = wall, v, t), wherev, is
the velocity perpendicular to the wall. Although these boundary conditions are required
many bounded PIC codes, a comprehensive accuracy or error analysis has not appea
the literature. The purpose of this paper is to expand upon the commonly used injection
loading schemes, adding an analysis of the accuracy of a number of techniques. This p
discusses techniques for converting model distributions (statedxvétidv given at the
same time) intox andv suitable for the common second-order accurate leap-frog integrat
(with x andv half a time stepAt/2, apart).

The organization of this paper is as follows. First, we will discuss and define cumul
tive distribution and scalings used in this paper. Second, we will review the inversion
Maxwellian distributions and fluxes with the addition of refinements to improve numeric
accuracy and efficacy. Last, we will discuss several new methods for time-centering pe
cles injected from the edge of the simulation and compare the results of these new meti
in a crossed-field diode.

1.1. Motivation

In order to demonstrate the error, we present highlights of injection in a magnetiz
crossed-field diode, previously simulated and published by Verboncoeur and Birdsall
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FIG. 2. Model for the three cases and self-consistent examples. The cathodesst

using the particle-in-cell (PIC) code XPDP1 (X-window plasma device planar one-dimer
onal) [11]. A diagram of the diode is shown in Fig. 2, and the physical and numeric
parameters are summarized in Table II; the complete behavior is given in Section 3.4.
theory for this diode was derived by Latial. [12].

Compared to the theoretical predictions, XPDP1 version 3.1 (which used the old inif
advance fox andv) obtains a small 0.2% error in the critical current and a large 64% err
in the cathode electric field and surface charge. Using the second-order initial step prese
in this paper, with the same numerical parameters, results in a less tha63% error in
the critical current, and a 4% error in the expected cathode electric field. These errors
illustrate that not all parameters in a simulation are affected equally by the initial push. T
critical current is insensitive to the initial push while the surface field was sensitive.

Phase space near the cathode, when the simulation is in equilibrium, is shown for
old (zeroth-order) and new (second-order) initial step algorithms in Fig. 1. The phase sf
shows the results of using the more accurate injection push; first, it removes the incor
spacing of particles in the successive time steps. Second, the correct positions of the par
produce a space charge different than the incorrect injection; thus, the electric field that
used in the second-order injection method is different from that produced by the zero-ol
injection. These changes in the equilibrium state agree better with theory [12].

1.2. Background

In the literature, papers that discuss patrticle injection and loading are usually focuset
reducing macroparticle induced noise in PIC simulations by careful ordering of the partic
in position and velocity space, calledaiet start These ordering methods are first attributec
to J. A. Byers in 1970 [13] and discussed and reviewed in 1980 by Denavit and Kruer [1
While quiet starts are not the main focus of this paper they are applicable to the invers
algorithms presented here. Quiet starts are most useful in transient or instability gro
simulations when low initial noise levels are important. Indeed, the intent of a quiet star
to postpone the development of thermal fluctuations in a simulation; it cannot prevent thi
The following is a brief literature review of the different methods proposed for reducing t
injection and loading noise in a PIC simulation.

In 1971, Morse and Nielson [15] readjusted randomly picked velocities so that the fi
moment (momentum) in each cell was equal to that of the initial distribution function. Tt
technique was expanded upon by Gitomer in the same year [16] so that both the first
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the second (energy) moments were correct. These methods yield a small reduction of r
but do not have the numerical problems of the following schemes.

In 1972, Denavit [17] used a hybrid PIC model and numerical solutions of the Vlas
equation in order to reduce noise in phase space. The distribution function is rec
structed periodically, as in Vlasov solutions, by a local averaging operation in phe
space. This distribution function is inverted to obtain particle velocities using the variat
weights. The analysis of this variable weighting method was later published by Gitomer
Adam [18].

Gitomer and Adam [18] discussed two methods; one assigned the velocities in an
dered manner and the other varied the particles weights. The first method, ordered velc
initialization, can give rise to a multibeam instability, which was predicted by Dawsc
[19]. The second method, variable particle weights, leads to a multibeam instability [J
and was later found to have a nonphysical heat exchange between the particles of diffe
numerical weight [20]. Both of these methods are still useful because these nonphys
(numerical) problems are significant only in certain parameter regimes, which are discus
in the articles.

In 1988, Lawson [21] modified the ordered velocity sequencing of Gitomer and Ada
[18] for flux injection, but cooling occurs due to the particles becoming disordered, givir
up energy to the electric field fluctuations.

Inverting a velocity distribution requires an understanding of the ramifications of usi
macroparticles. Denavit [22] discusses the effect of discrete particles and discrete par
position and velocity loading for electrostatic and Darwin (magnetoinductive) field solve
For simulations that reach a steady state, an understanding of the effects of discrete
ticles and fluctuations is important because quiet starts do not reduce the fluctuation
steady state. Matsuda and Okuda [23] studied numerically and analytically the disci
particle effect on drag and diffusion of particles in velocity space. Loading and injectic
are mentioned briefly in these papers.

1.3. Cumulative Distribution Functions

The cumulative distribution function maps the distribution function variable (e.qg., velo
ity) to a uniformly distributed set of numberR, typically normalized between 0 and 1.
The cumulative distributiork (v) is

fvl():l f () dv’

R=FWw)=-‘"F——
) S f )y dv”

1)

wherev andvg, are the lower and upper cutoffs, respectively. The method of cho&siimg
the cumulative distribution function may affect the results of a simulation. The two metho
used to choos® are pseudorandom or subrandom sequen@smulative distributions

2 A random sequence should uniformly fill in the domain at a rate/af il whereN is the number of points.
Many physical processes will fill out a distribution function at this rate. In natural proceNsemy be much
larger than can be used in a simulation because of the limitations in memory and speed of the computer. T
are other ways to choodR in order to fill in the domain more quickly. If the number of particles to be used is
known in advance, thB's can be distributed uniformly. There are also subrandom sequences in which the relat
error decreases at least as fast AN 1Obviously, if the simulation results depend upon the physical fluctuatior
scaling law of ¥+/N, this difference will affect the results. An ideal quiet start would maintain the same scalin
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that cannot be inverted analytically will be inverted numerically. The numerical inversic
consists of making a second-order table and then interpolating the cumulative distribu
function between table values. The whole process is second-order accurate in table \
spacing.

1.4. Definitions and Scaling

Due to the ubiquity of the Maxwellian—Boltzmann velocity distribution, emphasis he
been on loading Maxwellian distributions and injecting Maxwellian fluxes. The metl
ods presented here are also applicable to any separable continuous distribution func
f(vy) T (vy) T (v2), with continuous and finite first and second derivatives. (Relativistic ve
locities have the added complication that the velocity components couple; approxim
decoupling is achieved when the drift is large compared to the thermal velocity.) T
Maxwell-Boltzmann distribution is given by

—E
f(E) « exp(ﬁ), (2

wherek is Boltzmann’s constang is the kinetic energy, andl is the temperature.

A nonrelativistic anisotropic Maxwellian distribution can be broken into three separe
one-dimensional distributions and then inverted independently; this separation is prop
exploited whenever practicable in this paper. For this work, the definition atitheom-
ponent of thermal velocityy;, is taken to be

1 1
Emutzi = EkTi' 3)
The thermal velocity of an isotropic Maxwellian is given by

1 3

3 .
Emvt2 = kT, with vE = v 4)
i=1

Using the 1d definitions (Eg. (3)) a Maxwellian distribution is defined as:
f(v) x e v/ ()

With these definitions the standard deviation of the distributiag isThe velocities in this
paper are normalized hy; /2 (the normalized velocity is equal t¢/ (vt +/2)), in order to
simplify the equations, unless otherwise noted.

law but reduce the proportionality constant. The scaling laws of many quiet start methods are not publishe
the few published cases the scaling deviates frgrfMl. Using subrandom sequences is a variation of a quie
start. Pseudorandom numbers can be replaced with a subrandom or uniform number sequence, if numerical
suppression is desired. Bratley and Fox [24] provide a review of (and references for) some of the more nof
examples of subrandom sequences, including bit-reversed, Fibonacci, and Sobol. One note of caution :
using ordered subrandom sequences is that successive numbers fill in gaps left previously in the sequenc
consequence of the sequence being ordered is that the inversion must start at the beginning. For example, nt
1 throughN will fill in the space uniformly but numbenrsl /2 throughN will not. There are also consequences to
the spectral content of the fluctuations. Pseudorandom sequences approach a uniform spectrum in Fourier sy
N increases, but subrandom sequences will have a finite number of Fourier components. The choice of seq
is a fine tuning knob that the reader may adjust for the application.
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2. LOADING A MAXWELLIAN VELOCITY DISTRIBUTION

The cumulative distribution function for a Maxwellian with both an uppsgg, and a
lower, vg, velocity cutoff in one dimension is

[Ledv  Erfv) — Erf(vg)
F(v) = R= =X = ’ °
(v) Veua—v'2 o/ Erf(vew) — Erf(ver) ©

Vel

where Erf is the error function. Solving for
v = EfY(RErf(vey) + (1 — R)Erf(vg)). (7)

With present day digital computers it is faster to tabulate Eq. (6) and then interpolate witl
the table than to calculate Eq. (7) for each particle. A table of uniform probability [25] w:
calculated using the bisection method (the guaranteed convergence of the bisection me
outweighed the increased convergence of methods such as Newton and secant).

A Maxwellian distribution can also be inverted using the Box—Muller method [26] an
is presented here because it is easily modified for upper cutoff Maxwellian distributiol
This method transforms a uniformly distributed pseudorandom number to a Maxwelli
distribution. First, pick two pseudorandom numbeisndv,, with0 < vy, v, < 1.Because
of the requirement that; andv, be uncorrelated, this method is not well suited for use
with subrandom sequences. The sum of the squ&®es; v2 + v3, is formed. IfR? > 1,
then reject; andv,, otherwise accept them. The Box—Muller transformation returns tw

normal deviates,
In(R?) In(R?)
- R? and vy = vpy/ — RZ (8)

This is equivalent to invertingf (v) (see Section 3) and then randomly choosing an ang|
to obtain two velocities. To show that this is the correct transformation between unifol
deviates and the distribution function, take the determinant of the Jacobian of the trans
mation:

vy vy
(v, v2) v dws ©
3(1)]_, vg) dvp  dvy '

31}1 avz

If the Jacobian is a product of a function of and v, alone, then each velocity is in-
dependently distributed according to each function in the product. The Jacobian for
Box—Muller transform, Eq. (8), is

d(vy,v2)

s o) = —exp(—v?)exp(—v3). (10)

The domain of the pseudorandom number can be scaled so that that it transform
a cutoff Maxwellian distribution. Since the Box—Muller transformation is equivalent t
inverting vf (v) and then randomly choosing an angle (Section 3), it can be solved for
with an upper cutoff and then an angle can be chosen at random to obtain two velocities.
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Reu = €%, whereuvg, is the upper velocity cutoff. The transformation for an upper cutof
Maxwellian is:

V.
vy = El\/ugu —In(R2 + (1— R)Ry,), and -
vp = % v2, — IN(R? + (1 — R)Ryy).

This method is not easily expanded for a lower cutoff; hence, the transformation for a loy
cutoff must be done numerically.

When the desired distribution is a Maxwellian with a nonrelativistic drift componen
the drift, vo, can be added linearly; = vo + v. For the relativistic case, the addition is
nonlinear; see, for example, Smith [27, p. 117].

2.1. Time-Centering of Loaded Particles

Many PIC codes use a leap-frog integrator in order to integrate the equations of mo
for the particles. In the leap-frog algorithm, the velocities and positions are offset by ha
time step, often called time-centering. In Section 2.7 of Birdsall and Langdon [10] a seco
order method for time-centering particleg at 0 is presented for uniform plasma with the
electron having an initial position of the form(t = 0) = Xjo + Xj1 c09KsXip) With zero
velocity; X1 cogKksXip) is a perturbation of equally spaced positi@grg). This method is
first-order whema/dt £ 0, whenB # 0, orwhernvg # 0, as shown below. This section will
present a generalized second-order method for time-centering particles. In this pape
velocities have been arbitrarily (but computationally efficient) chosen to lag the positic
at the end of a time step. Time-centering will also be discussed for particle injection
Section 3.1, applying the same formalism.

To formulate a numerical PIC injection or loading method, one can begin with the Lorel
equation of motion,

mX(t) = qEX(t), t) + qv(t) x B(x(1), 1), (12)
which can be rewritten as
X(t) = e(x(t), t) + Qx(t), HHv(t) x B(x(t), 1), (13)

wheree = qE/m, = q|B|/m, andb = B/|B|. Continuous quantities will be denoted by
(), e.g.,E(t) is the electric field as a continuous function of time.

Before discussing the half-step needed for loading, a review of the standard leap-
integrator with the magnetic term centered by averaging [10] is presented;

Xn+1 — Xn = Vny1/2At, and
- (14)
Vnt1/2 — Vn-1/2 = €nAt + tan(QnAt/2) (Va_1/2 + Vat1/2) X b,

wheren indicates the time aftan time stepsf, = nAt. Loading is usually done at=0
(n = 0), but to maintain generality so that we can use these results for injecting partic
from a boundary (Section 3.1) we will center particles at timéime stepn). Discrete
quantities are denoted by subscripts, €g.is the electric field at time step To find the
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order of accuracy these equations may be combined and Taylor expanded &rotnel
acceleration truncation errcf,, will be defined as the continuous acceleration equatior
Eg. (13), minus the discrete acceleration equation, Eq. (14), attijime,

£ = X(tn) — (€(X(tn). tn) + Q(X(tn), t)V(tn) X D(X(tn). tn))
_ <Xn+1 - 2Xn + Xn—1 N (en + tar(QnAt/Z)(Xn-ﬁ-l - Xn—l) X Bn ) ) (15)

At2 At?

Assuming that the discrete and continuous fields agree at integer time steps, the error
be simplified at thenth time step to:

Xn41 — 2Xn + Xn-1

£ = Kty ~ 220
# (AEAUEC T g, i) ) xBr (19

Taylor expanding in time arountg and explicitly writing the second-order error term, we
obtain

E= —%z[dtmx(t) — Q(X(1), 1) (Q2(X(t), HX(L) + 20k X(1)) x bp] At2 + O(ALY), (17)

whered; . is shorthand fotd/dt)" andO(At") is a vector where the lowest order compo-
nent is orden. Equation (17) shows that the leap-frog integration is globally second-ord
accurate. From Eqg. (17) and the velocity update of Eqg. (14) one might expect that
velocity would have a local truncation error 6?(At®); however, the velocity is only
O(At?). As shown here by Taylor expanding the position update of Eq. (14) and showi
the second-order term explicitly:

Xn+1 — Xn

1
= v((n+ 1/2)At) + 2—4dtttx(tn)At2 + O(AtD). (18)

Vny1/2 =
It will be shown that the second-order loading (and later the injection) method will ha
the same®(At?) local truncation error as shown in Eq. (18). The position, as expecte
has a local truncation aP(At%), which can be shown from Egs. (17) and (14). It would
be incorrect to assume that a fourth-order position injection and any second-order velo
injection would comprise a second-order global method. In this case, the second-order
in Eqg. (18) cancels when it is differenced with_,> to form the acceleration:

Vnt1/2 — Vn-1/2

At
VI+ /DA + FdaX(t) A+ O(AL) — (V(1 = 1/2)AD + FbuX(t) AL + O(AE))
= At
_ V((n+1/2A —v((n = 1/2AY OAL), (19)

At

This shows how the second-order truncation error in velocity cancels when combinec
form the acceleration. This seemingly trivial cancellation is the essence of the difficulty
forming a second-order truncation error.
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The proper way to obtain the truncation error of a loading or injection method is
substitute the position and velocity into Eq. (16), the leap-frog error equation:

Xnt1 — Xn — Vn_1/2At
At?

N (tan(sznm/a (Xn+1 = Xn + Vn_1/2A1)
At?

£ = X(ty) —

— Q(X(tn), tn>>'<(tn)> x bp.  (20)

Herex, is the position at time step andv,_1> is the velocity at time step — 1/2, the
first position and velocity after time-centering. For Eq. (20) to be second-order, the lo
truncation error in position of the time-centered partiglg,must be at least fourth-order,
as in standard leap-frog. It is important that the position have the same truncation e
as leap-frog because the particle positigy),is used in the field solve at time stapFor
Eg. (20) to be second-order accurate, the velocity of the time-centered particig,
must have the same second-order local truncation error as leap-frog (Eq. (18)) becaus
truncation error cancels as the particle integrator advances (Eg. (19)). Also, it is neces
to have the velocity error second-order, in order to have accurate current collection fol
electromagnetic field solve. In the analysis of the following methods the truncation er
will be kept through second-order in the Lorentz equation error (Eq. (20)) and third-orc
in Vn-1/2-

We will analyze two loading methods. The first loading method presented is from Birds
and Langdon [10] with an added magnetic field. The second method is a second-o
method for general time-dependent fields.

2.1.1. Half time step push for particle loadingFirst we will analyze the method of
time-centering presented in Sections 2—7 of Birdsall and Langdon [10] in which the veloc
is pushed back a half-step. This method may be written in the form

At
Vn-1/2 — Vp = —97 — tan(QAt/4) (Vn,]_/z + Vn) x b. (22)

Substituting Eq. (21) into the truncation error equation, Eq. (20), then Taylor expanding :
applying the chain rule we obtain a first-order accurate method for general time-depen
fields. Due to the complexity and length of the analytic expression for the truncation er
for this method with time-dependent fields, the expression is not shown here. The Ic
truncation error for the half-step veloci®,, is second-order.

The above method is first order in general; however, it is second-order under limi
conditions. For an illustration of when this method is second-order we will choose t
magnetic field to be zero; then the truncation error of the above method can be written

de(tn)
ot

£ = -é (v(tn> - Ve(ty) + )At +O(At). (22)

This truncation error (Eq. (22)) will be second-order if the velo¢itgt,)) or Ve(t,) is zero

or Ve(ty) is perpendicular tw(t,) and the derivative of the electric field in time is zero.
These assumptions are true for the loading of the perturbation in Birdsall and Lang
(Sections 2-7); thus their loading scheme is second-order accurate for that special
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The velocity error for zero magnetic field is

£,= VN~ 1/DAD —vn 172 = — 5 Xt AL - 3(v<tn> Velt) + 86““))At2.

(23)
Comparing Eq. (23) with the error in the leap-frog velocity, Eq. (18), we see the seco

term on the right does not cancel, leaving the velocity with a second order local error te
which is globally first order in the general case (per Eq. (22)).

2.1.2. General second order time-centering for particle loadinbhe particle injection
method discussed later (Section 3.1) is a generalization of a second-order loading me
where all the particle velocities and positions are known at timérhe injection method
shown later is for particles that are injected at an arbitrary time between time steps.)
save space we will not derive the specific results here and the more general results late
simplify the more general results from Section 3.1. For the second-order injection mett
past time step field values are used. However, for the loading previous field values are
available; instead the time derivative of the fields must be given as an initial condition
at least first-order. Therefore, the fields needed for the half step push (a simplificatior
Eq. (49), withf = 0 and the time index on the fields shifted from- 1 ton) are

3902 (Xn, N) 1
Q, = 2Xp, N) — —7& — =Vp - VQ(Xn, N)AL,
ot 4
A - 3b(Xn, N 1 A
b, = b(Xn, n-7 (Xn )At — ZVp - Vb(Xn, N), (24)
ot 4
3e(xn, n) 1
e, = e(Xp, N) — At — —vp - Ve(Xp, N)At.

4 at 4

The velocity half-step for the load (a simplification of Eq. (51)) is

1 A
VvV —v, = —éeUAt —tan(Q,At/4) (V' +vy,) x by,
’ AtZ T T T 2

Vnoip — V' = ey ex bQ/At + (bb-vy) —vn)Q
+Vp - (Ve+ (VQV,) x b+ Qv, x Vb)

+ae(xn,n) DXy, N) IR (Xn, N) )

(25)

Qv Vh x b.
T TEE A L R

This simplified version of Eg. (51) is obtained becaxgeloes not need to be changed to
be time-centered and we have used the relation:

\% Vn—
- y + O(AL), (26)
The local truncation error for the half-step velocify,, hasdi:Xx(tn)/24 as a second-order
term, which properly cancels in the leap-frog integrator. The global error of the leap-fr
integrator with this time centering is second-order.
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3. INJECTION OF MAXWELLIAN FLUX

The flux of a distribution is used to inject particles from a boundary in the system. T

boundary may represent a physical interface or a computational box to reduce the prot
to a practical size. Since the emission will only occur for velocities moving away from tl
boundary, the coordinate system is chosen so that the positive velocities are moving &
from the boundary. A point that is often confused is whether a Maxwellian flux or a driftir
Maxwellian flux model should be applied. The electron flux from a hot (thermionic) catl
ode is a nondrifting Maxwellian flux, which has an average velooity = fo°°vf (v) dv.
To model electrons that came from a Maxwellian source and were accelerated (i.e.
an electric field), a Maxwellian flux with no drift should be inverted (as inverting th
distribution at the source) and then a velocity corresponding to the acceleration she
be added (relativistically or nonrelativistically); a drifting Maxwellian flux should not b
used.

A drifting Maxwellian flux is used to inject a thermalized drifting plasma. The drifting
plasma could be a beam that has thermalized due to Coulomb collisions, normally a |
time (distance) for beams. Also it could be used when the simulation frame is movi
through a resting plasma, for example, a space tether or spacecraft in the rest fran
the space tether or spacecraft. The computational boundary emitting the flux represen
infinite plasma.

The normal to the emitting surface defines the direction of the flux at the surface;
other two directions are not fluxes but distributions (as treated in Section 2). For exe
ple, in Fig. 2 the emission flux direction normal to the surface is inxthdirection; in
the transverse directiong; and xs, the distribution is inverted (Section 2). The direc-
tion of the velocity of the inverted flux is normal to the wall with a magnitude denote
by v.

A Maxwellian flux without a drift at the emitting surface can be inverted in closed forn
with or without cutoffs. The cumulative distribution function is

I, ve ' dv’
[ du @D

Vel

R=F@) =

whereR’ is a uniformly distributed pseudorandom numbex ®’ < 1. Equation (27) can
be integrated and then solved for velocity,

v = \/vgl +vZ, — In(Rexp(vg) + (1 — R)exp(vZ,)). (28)

For a distribution without cutoffs, this reduces to

v=1+/—In1-R)=+/-In(R), (29)

whereR = 1 — R’ is a uniformly distributed pseudorandom numbexk R < 1; R=0
is removed from the domain because an infinite velocity is not easily representable t
computer.

For a Maxwellian flux with a drift, the velocity cannot be written in closed form. In.
stead, the flux distribution must be inverted numerically. The cumulative distribution fol
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Maxwellian flux with drift and upper and lower cutoffs is

[ v gy
Vel

Rerm= [rvie - o (30)
This can be integrated:
R Fo) = E(UCI_UZO)Z _ e(v—uo): + /T Erf(v — vg) — /7 vo Erf(ve — vo) (3D)
ewer=v0)" — gWeu=20)" /v Erf(vey — vo) — /T vo Erf(ve — vo)
For vey — oo andvg — O,
R F(o) = e i —e " + / wo(Erf(v — vo) + Erf(v0)). @2

e % + /7 vo(1 + Erf(vp))

The inversion of these equations to obtair= F~1(f) must be done numerically. The
numerical inversion was the same as outlined in Section 2. The integration for an arbit
distribution can also be done numerically. The effects of discretizing the distribution &
analyzed in Appendix A.

For a Maxwellian flux in which the drift is much larger than the thermal velocity, thi:
method can be approximated by a drifting Maxwellian as done in Section 2. A driftir
Maxwellian is easily inverted using the Box—Muller transform, whereas for a driftin
Maxwellian flux the inversion must be done numerically; therefore, it is advantageo
to use a drifting Maxwellian wherever appropriate. Most of the error (Maxwellian flu
minus drifted Maxwellian) occurs at + 1/+/2 as shown in Fig. 3 withy = 1, 3, 6, and
10. The largest positive error occurs at

1— /14 2627 (1 + Erf(v0))?

Vpos = Vg + 33
Pos— 70 2e% /7 (1+ Erf(vo)) (33)
0.30 -—
0.20 vt |
- s
v |
. 0.10 S
Y000 e e e e TN
-0.10 :
-0.20 ‘ '
0.0 3.0 6.0 9.0 12.0
Velocity (v/V2v,)

FIG. 3. The absolute error, Maxwellian flux minus the flux of a drifting Maxwellian, as a result of using
drifting Maxwellian instead of a drifting Maxwellian flux far, = 1, 3, 6, and 10 ¢, normalized by/2uy).
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10° . ' '
Exact Error
g 10_1 I N Limit of Large Drift
[
k)
E
€10° | .
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107 ; ' :
0 1 10 100
Drift Velocity (142 v,)

FIG. 4. The integrated absolute error squarkd florm) as a result of using a drifting Maxwellian instead of
a drifting Maxwellian flux.

and the largest negative error occurs at

14 /14 2628 (1 + Erf(v0))?

Uneq = Vg + 34
neg = 70 2e% /7 (1+ Erf(vo)) (34)

An analytic expression for the integrated RMS; (horm) error is:

a 2 2
errorf|,, = ————— 1/ —8aé&% — 4ug + b(4a2 + e?), 35
lerror., 2@+%€®¢ 0+ b ) (35)
where
1

and b = /27 (1+ Erf(v/2v)). (36)

8= Jzd+ Efo)

In the limit vo >> 1 the||error]|_, = 1/(2¢/2vo). The integrated RMS error is shown as
a function ofvg in Fig. 4. Also, a Maxwellian with a relativistic drift and nonrelativistic
thermal velocity may replace a drifting Maxwellian flux through the use of the relativist
velocity addition.

3.1. Time-Centering Injected Particles

Time-centering of velocityy, and positionx, when loading particles is common; how-
ever, time-centering injected particles emitted from the boundaries is not. Figure 5 c
veys the problem graphically. The authors have found two papers that have some dis
sion of time-centering at the boundaries. Lawson [28] states the need for particles tc

Velocity

Position

n-1 n-1/2 n

FIG.5. Toinjecta particle in atime-centered manner in the intefival 1) At < t < nAt, the particle needs
to be advanced from(t) andv(t) to x(t = nAt) andv(t = (n — %)At).
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time-centered, but does not provide a method. Schwager and Birdsall [29] use an ene
conserving reflection algorithm which time-centers the particle positions and velociti
(due to Lawson), but is not second-order accurate. Many simulations are not sensitiv
the shape of the emitted distribution function. However, it has been observed recently
in some cases time-centering is critical, such as in cross—field diodes and virtual c:
ode diodes [2, 3]. Inaccurate emission of a distribution function can be thought of
changing the shape of the emitted distribution function, which varies during a time si
since the error is a function of when during the time step the particle is injected. T
difference between a non-time-centered distribution and a time-centered distribution i
most the change in the velocity and position (the placement of the emitter) of a le:
frog advance. In other word, if the positiagr,_¢) and velocity(v,_;) are used in the
leap-frog advance (Eq. (14)) &s,) and (vo_1/2) the change in position txn;1) and
(Vn+1/2) bounds the changes that any of the time-centering methods in this paper g
erate during the time-centering procedure. If this difference in distribution function
unimportant to the results of the simulation the accuracy of the emission can be di
garded.

In this section, a second-order accurate method is derived for particle injection at
arbitrary time with time-dependent, inhomogeneous fields. Derivation of the methods ¢
an accuracy analysis are in Section 3.2. The performance (computer speed) is discuss
Section 3.3. Comparison to analytic test problems and a self-consistent simulation ar
Section 3.4.

3.2. Injection Methods

To formulate a numerical PIC injection method, begin with the Lorentz equation of m
tion, Eq. (12), just as in the time-centering of loaded particles (Section 2.1). It will t
shown that the second-order injection method will have the séxo&t?) local trunca-
tion error in (vn—1,2) (as shown in Eq. (18)) so that this error cancels when the partic
integrator advances (as shown in Eq. (19)). The position, as expected, has a local tru
tion of @(At#), which can be shown from Egs. (17) and (14). It is incorrect to assun
that a fourth-order position injection and any second-order velocity injection would cot
prise a second-order global method because of the cancellation shown in Eq. (19).
order of the injection method is obtained by substituting the injection velocity and positi
algorithm into Eq. (20). For Eqg. (20) to be second-order, the local truncation error in
sition of the injected particles,, is fourth-order, as in standard leap-frog. It is important
that the position has the same truncation error as leap-frog because the particle posi
Xn, is used in the field solve at time step Also, the velocity of the injected particle,
Vn-1/2, Must have the same second-order local truncation error as leap-frog in orde
cancel the second-order error of Eq. (18) when substituted into Eq. (19). It is necess
to have the velocity error second-order in order to have accurate current collection for
electromagnetic field solve. In the analysis of the following methods the truncation er
will be kept through second-order in the Lorentz equation error (Eq. (20)) fourth-order
Xn and third-order inv,_1,2. In many applications a general second-order method is n
needed because requirements are relaxed; for example, uniform fields or time-indeper
fields.

The five injection methods to be presented were chosen for the following reasons.
method used in the plasma device codes [11] illustrates the inaccuracy of injection wl
the problem was observed, which will be referred to as the “simple” injection metho
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The simple Borid push with fractional time step is a simple but much improved first-orde
method. The next three methods are second-order for special cases. The modified |
push with fractional time step is second-order for time-independent uniform fields. T
fractional Boris push with field gradients is second-order for time-independent fields. |
simulation parameters near these special cases the first-order error will be small. The
method, using field values from the previous time step, is second-order for the general c
Other second-order special cases may be constructed; for example, past field values c
used with the modified Boris push if a problem has time-dependent uniform fields.

3.2.1. Historical analysis of simple injection method:he first method to be examined
was implemented in the suite of plasma device codes from Berkeley [11] around 1988:

Xn — Xn—f = Vp—t T At, and
(37)

1
Vni = Vn-f = €(Xn_1,N — 1)<f - 2) At.

Herex,_¢ andv,_; are the position and velocity, respectively, at the fractional time step
injection,n — f,wheref = §t/At,0< f < 1. The algorithm thatis used to pidkmakes
the current as continuous as possible by injecting particles uniformly in time during a tir
step. Accumulated current that is a noninteger number of computer particles is carried
to the next time step. To obtain the truncation error, substitute Eq. (37) into Eq. (20), Tay
expand around theth time step, and apply the chain rule:

1 .
8:—5((f2+2f — 1)QuVy x by + %)) + O(AL). (38)

Equation (38) shows that this method is a zeroth-order accurate method. The positic
second-order accurate:

1 -
Ex=X(t) =X =—3 f2(6n 4+ QnVn x by AL + O(ALS). (39)
The velocity is first-order accurate:
1 T 2
E,=v((N—1/2At) —vq1p=—( f — > QnVn x bhAt + O(AL?).  (40)

This method is a poor choice because the lowest-order error in the Lorentz equatio
independent ofAt. One consequence of an error term independenttaé that it renders

a commonly used error checking technique useless. This nonrigorous method for chec
error for a given problem is to measure the result as a functiaxt off the injection error
dominates the truncation error, the zeroth-order error is hidden and chafgiwdl not
change the error even if it is unacceptable.

3 Both Buneman’s [30] and Boris’s [31] push centers the magnetic term by averaging the velocity, thus obtair
the same results. However, they obtained the results by two different implementations. Boris’s implemente
has become the standard method and hence we refer to the method as the Boris push.
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3.2.2. Simple Boris push.This method is a generalization of the Boris push using
fractional time steps. The method depends only on the field values at tima stdp of
which the first (zeroth-order) method (called the simple injection method, Section (3.2.
is a subset:

Vn-1/2 — Vn—t = €C1At +tan(QCAt/2) (Vn_1/2 + V1) x b,
Xn - anf - C3Vn7 f/zAt, and (41)

Vn—t/2 — Vn_f = €C4At + tan(QcsAt/2) (Vo t/2 + Va1 ) x b.

Here the parametersy( . . ., Cs) are independent akt, andv,_+, is afictitious (not accu-
rate) velocity at the fractional time step- f/2,and2 = QXp_¢t,n—1),b=b(X,_f,n—
1), ande=e(xn_¢, N — 1). Substituting Eq. (41) into the injection truncation error equa:
tion, Eq. (20) and then Taylor expanding, applying the chain rule, and choosing the f
parameters to cancel the error coefficients in the expansions results in a first-order acct
method for general time-dependent fields. Due to the complexity and length of the anal
expression for the truncation error for this method with time-dependent fields, the expr
sionis not shown here. The truncation error for the post-injection pos&igis third-order,
and the truncation error for the post-injection velocly, is second-order. Table 11l shows
the truncation error for the three test cases that will be described later.

The method witrey = ¢, = f —1/2,¢c3 = f, andc, = cs = f/2 is rewritten as

1 1
Vn-1/2 — Vn—t = e(f — 2>At +tan(§2 (f — 2>At/2) (Vn_l/g +Vn_f) x b,

Xn —Xn—f = fvh_fpAt, and (42)

f At
Vn_tf/2 = Vn_f = e? + tan(QfAt/4) (Vo_t/2 + Va_1) x b.

Thus, from Eq. (42) itis seen that this method is almost as simple as standard leap-frog
meets the minimum requirement that the error decreases with decregsing

3.2.3. Madified fractional time step Boris pushn this section, the fractional Boris push
is modified to make it second-order accurate for uniform fields. To make an injection mett
second-order accurate, the velocity push must have an added term that is independe
the fractional time stepf, that an injected particle is pushed, but which depends on tf
time step for the pushat. This term is the lowest order truncation term from Eq. (18)
(deX(t) At?/24). As shown in Section 3.2, Eq. (19), the second-order velocity error canc
in the left hand side of the leap-frog velocity update, Eq. (14), because of symmet
On the right hand side of Eq. (14), the second-order velocity error contributes only
the second-order acceleration error. The entire truncation tem(f) At2/24) will be
taken into account later; however, for this method only field terms independent of tir
and position will be used to construct this term. Using the normalized Lorentz equati
(Eq. (13)),duex(t) for a constant field sk X(t) x B; this can be calculated efﬂmently using
(vn+1 f—Vnotf) X bQ/At Alternatively, dix(t) x B can be calculated usingx bQ +
(b(b V) — V)Q?; however, this is numerically less efficient becausg not known.

The position advance, unlike the velocity push, has no cancellation of error terms ¢
to symmetry. There is a neglectedx(t) term which is taken into account by a term
(Vn_t/2 — Vn_t) x DS2/At, similar to the velocity update.



PARTICLE SIMULATIONS 499

A second-order method for constant fields that incorporates the previously neglec
velocity truncation termdg x(t) At?/24) is:

V —Vp_t = ECiAt +tan(QCAt/2)(V + Vp_f) X b,
Vniiof — Voot = €At +tan(QAt/2)(Vnpa— + V1) x b,
Vno12 =V = b1(Vnp1-f — Vnot) X bQAt, (43)
Xn — Xn—f = CaVn_1/2At + by (Vn_1/2 — Vn_t) x bRAL%  and

Vn—t/2 — Vot = €C4At 4 tan(QCsAt/2) (Vn—t/2 + Vot ) X b.

Here the parametersy( . .., Cs), 2, b, vh_¢,2, ande are defined as in Section 3.2.2 and
parametersh andb,) are independent akt. The velocity,V/, is the final velocity in the
fractional time step Boris push method (Section 3.2.2) and is now modified explicitly (;
the other velocity equations of Eq. (43) are implicit) by the truncation telgx(t) At2/24)
discussed previously. Again substituting Eq. (43) into Eqg. (20) and canceling all possi
terms, it is found that this method is first-order for general time-dependent fields, bu
second-order for spatial uniform fields. The truncation error for the injected posétjon,
is third-order for general time-dependent fields and fourth-order for constant fields. 1
truncation error for the injected velocity,, is second-order for general fields, but for
uniform fields the truncation coefficientdsx(t,) /24, the same as for leap-frog (Eq. (14)).
This results in a cancellation when going from the injection to the leap-frog integrator. T
method is rewritten as

1 1 A
V =Vt = e(f — §>At +tan(§2 (f — E)At/z) (V' +Vvn_t) x b,
Vntl—f — Vn—t = €At 4+ tan(QAt/2) (Vnr1—f + Vn—t) X B,

/ 1 T
Vpo12 —V' = Zl(VnJrl—f — Vn_f) X bQAL, (44)

2
Xn =Xt = TVn_ /28t + 2 (Vao1/2 = V1) x bRAL?,

f At
Vn_f/2 — Vn_f = eT + tan(Qf At/4) (Vn_t/2 + Vn_t ) x b.

This method is more complex than the fractional time step Boris push.

3.2.4. Field gradient fractional time step Boris puskithis method achieves second-
order accuracy for time-independent fields by using the spatial derivatisiodE that
are calculated and used on the injection boundary. This method is based on the mod
fractional time step Boris push of Section 3.2.3. First, the fields that are used are modi
by the derivatives with different constants for the velocity and position integration:

Q,=QXn_f,N—1) +divp_t - VR Xn_t, N — 1AL,

b, = bXn_t,N — 1) + doVp_ - VO(Xn_t, N — 1AL,

€ =eXn_f,N—1) +davp_t - VEXn_t, N — 1) AL,

Qy = QXn—t,N—1) +dgVn_t - VQ(Xn_t, N — 1AL,

by = b(Xn_f,N — 1) + dsVn_t - VD(Xq_f, N — 1)At, and
e =eXn_f,N—1) +dgvh_t - V&(Xn_f, N — 1) At.

(45)
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Second, for the velocity push, the truncation tedmx(t,) has the additional terms for
time-independent fields denoted by:

Ix = QX(t) i X(tn) X D(X(tn)) + V(tn) - (VeX(th))

- < 46
+ VQX(tn)V(tn) x b+ Q(X(t))V(tn) x VO(X(tn))). o)

Time-independent second-order solutions do exist without the newggrimthe truncation
term, dy:X(tn) /24, in the velocity push; however, the coefficients have a functional fort
1/(f —1/2) and are singular af = 1/2; therefore,;x will be used. Incorporatingy
and the fields modified by the derivatives of the fields into the previous injection meth
(Section 3.2.3) yields:

V = Vit = €,G1 At + tan(Q,CoAt/2)(V + V1) X Dy,
Vnil—f — Vnot = €At +tan(QAt/2)(Vnra—f + Vn_t) X B,

Vn_12 =V = b1(Vay1t — Va_1) X DRQAL

. - (47)
+dVn_t - (Ve+ (VQVn_t) X b+ Qvy_t x Vb)AL2,
Xn — Xn—f = C3Vn_f/2At + bz(Vn,f/z — Vn,f) X BXQAtZ, and
Vn—f/2 — Vn—f = €CaAt + tan(Q2xCsAt/2) (Vn_t/2 + V1) x bx.
Here the parameterby(andby), (Cy, . . ., Cs), Va—t/2, V', 2, b, andeare the same as defined

in Section 3.2.3 and the parameteds, ( . ., d7) are independent okt. Again substituting
Eq. (47) into Eq. (20) and canceling all possible terms by choosing parameters results
second-order method for all time-independent field configurations, but a first-order mett
for time-dependent fields. The truncation error for the post-injected posdligns third-
order for time-dependent fields and fourth-order for time-independent fields. The truncat
error for the post-injected velocit,, is second-order for time-dependent fields, and the
second-order term id:X(th) /24 for time-independent field configurations. This methoc
(with d; = 1/24) can be rewritten as:

1 1 N
V — Vot = ev<f — §>At +tan<§2v<f - E)At/z)(v/Jrvnf) x by,
Vnii f — Vn_f = €At 4+ tan(QAt/2)(Vny1_ + Va_f) X b,

1 .
Vno12 — V' = ﬂ(VmLf — Vn_t) x bQAt
(48)

1 . .
+ogVn- 1 (Ve+ (VQVn_t) x b+ Qs x Vb)AL?,

2

f A
Xn — Xn—f = Vn_f/2 f At + E(vn_f/z —Vn_1) x byQAt?, and

f At o
Vn—t/2 = Vn—f = exT +tan(Qy f At/4) (anf/Z + anf) x by,
usingd; = do =ds = (f —1/2)/2 anddy; = ds = ds = f/3 in Eq. 45. Without a field
gradient this case reduces to the modified fractional time step Boris push (Section 3.2.

3.2.5. General second-order method his is a method that is second-order for genera
spatially and temporally varying fields. This method requires field values at a previous ti
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as well as spatial derivatives BfandE. Defining the field values to be used in this methoc
to be a combination of old, new, and spatial derivatives results in:

Q=0A—-tDQXn—, N =1 +t12Xn_, N —2) + d1Vn_t - VR Xn_t, N — DAL,
b, = (L—t)b(Xn—1,N = 1) + DX 1,n = 2) + daVa_ - VDX, n — DAL,
€& =1 —-t3)eXy_t,N—1) +tze(Xq_t, N —2) + daVp_t - VE(Xn_t, N — DAL, (49)
Q=1 —-t)QXn—t,N—1) +t4QXn_t,N—2) + dgVn_t - VQ(Xn_t, N — 1AL,
by = 1 —t5)bXn_, N — 1) +tsb(Xn_, N — 2) + dsVp_t - VB(Xn_, N — 1)At, and
e =(1—te)eXp_f,N—1) +tg€(Xn_f, N —2) +dgVp—¢t - VEXn_f, N — 1) At.
For the velocity injection push, thigx(t,) truncation term for time-dependent fields con-

tains the same termg, (Eq. (46)), as for time-independent fields in addition to the following
terms:

G = de(x(t), t) + QX(L), HV(L) x DX(t), 1) + QX(t), HV(t) x db(x(t),t). (50)

Thereforedy x(tn) = ditX(t) x B + ¢ + ¢ for general fields. Incorporating this into the
previous injection method given in Eq. (47) yields:

V/ — Voot = €,C1 At + tan(©2,CoAt/2)(V/ + V1) X Dy,
Vigiof — Voot = €At + tan(QAt/2)(Vopa—t + V1) X b,
Vn_1/2 =V = bi(Vn1-f — V) X DRAL + dyvn_t - (Ve+ (VQvn_ 1)
x b+ Qun_t x VD)AL? + t7(e — &(Xn_1, N — 2)

A (51)
+QVn_t x (b —bXn_t,n—2)
+(2 — (X1, N — 2)Vn_t X D)AL,
Xn — Xn—f = CaVn_f/2At + ba(Vn_f/2 — V1) x bQAt2, and
Vn—t/2 — Vn—f = 6C4At + tan(QyCsAt/2) (Vn_/2 + V1) X by
Here the parameter®y(andby), (C1, ..., Cs), (d1, ..., d7), V1,2, V/, Q, b, ande are as

defined in Section 3.2.4, and the parametgrs (., t7) are independent aft. Substituting
Eq. (51) into Eqg. (20) and canceling all possible terms by choosing the , t; parameters
resultsin a second-order method for arbitrary fields. The truncation error for the post-injec
position, £y, is fourth-order for general fields. The truncation error for the post-injecte
velocity,€ ,, hasdX(t,) /24 as a second-order term. For this method oA t?) accurate,
h=th=1t3= (Zf — 3)/4,t4 =15 = t6=2f/3— 1lin Eq (49), and; = 1/24 in Eq (51)
Since the only difference between Egs. (51) and (48) is the term with ¢oefficient added
to the velocity update, this method will not be rewritten. With time-independent fields tt
method reduces to the field gradient fractional time step method in Section 3.2.4.

3.3. Computer Performance of Injection

The more accurate pushes are computationally more expensive. An operation coun
the methods described here is given in Table I, in three spatial and velocity coordina
standard leap-frog is given as well. On contemporary computers the tangent function i
far the most expensive part of the push. If the tangent is used, then the ratio of the sy
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TABLE |
Operation Count for the Different Methods
Discussed in the Text

Operation count

Method Addition  Multiply Tan
Simple push 7 6 0
Fractional time step Boris push 43 56 2
Modified Boris push 89 105 3
Boris push with field gradients 110 129 3
Second-order method 123 155 3
Leap-frog 21 22 1

per each push is roughly proportional to the number of tangent function calls. Beca
of the expense of the tangent call, a small angle approximation is almost always usec
time changing magnetic fields (if the magnetic field is time-independent théfda(P)
can be calculated once and stored on a grid for spatially changing fields). If the sn
angle approximation is used, the ratio of the multiplication operation count will rough
be the ratio of the computation speed for each push. Therefore the fractional time ¢
Boris push, modified Boris push, Boris push with field gradients, and general second-o
method are about 2.5, 4.7, 5.9, and 7 times as expensive as leap-frog. Due to diffe
coding methods and compiler optimizations for implementing a push, a more accurate r
is hard to estimate. For example, for the leap-frog push there is generally not a funct
call overhead for each particle; however, for our implementation, each injection push d
have a function call overhead. Also, more information is used in the higher order pust
past time field values, and derivatives of fields; the retrieval time from the main memory
the computer may be a significant part of the time needed to calculate the injection pt
However, due to the increase in accuracy the time step could be increased by up to an ¢
of magnitude with the same error; see Figs. 9 through 11. The increase of the tintd stey
is still limited by numerical instabilities; for example, in explicit leap-frog the time stej
is still limited by wp At < 2 wherewy, is the plasma frequency. The increased expense
calculating a higher order injection push is negated by a large savings in pushing parti
in the plasma bulk with a larger time step, assuming the bulk has many more particles t
are being injected each time step (it is difficult to construct a case where this is not trt
For single species diode simulation which will have the fewest number of bulk particles
injected particles; the ratio can be as small as one hundred.

3.4. Results

The test cases analyzed here are special cases of the crossed-field diode [4, 12], illust
in Fig. 5. For clarity, examples will be given in one dimension (XPDP1 [11]); however, th
general second-order method is implemented in XOOPIC [32] and XPDP2 [33, 34]
2D. A uniform time-independent external magnetic fielR],is imposed parallel to the
cathode surface alorg Under a constant imposed voltayf, on the diode, the Hull field
[35], By, is defined as the minimum field for magnetic insulation, such that one electr
leaving the cathode with velocity, would just graze the anod®; = (2m\p/|e|L2 +
(muy/]e|Lyx)?)Y2, wherem is the mass and is the charge of an electron. The imposed
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TABLE Il
A Summary of Parameters Used in the Three Test Cases

Casel Case 2 Case 3
Constante Gradient ofE Oscillatory E
mvZ, /(2q) 0.5eV
mvg,/(29) 0.5eV
Bz 337 G (2| =5.92617x 1 rad/s)
At 5 x 1072 sec (Q|At = 0.0296
Eo —10° V/Im —9.391x 10* V/m —10° V/Im
E; 0 —4.49 x 10° V/Im? 0
€ 0 22.4824
10} 1 4.84580 1
E 0 0 1

magnetic field for all the cases is5lx 102% below the Hull field; hence, electrons are
collected by the anode. For emission below the limiting currén{36], all the current

injected at the cathode propagates to the anode. This current is also known as the cr
current, the largest current where a steady state cycloidal flow exists. The definitior
critical current is also valid for solutions with fields larger than the Hull field where n
particle current is transmitted. The three imposed field test cases are idealized limit
this diode, summarized in Table Il. The self-consistent case, summarized in Table IV
a simulation near the limiting current slightly below the Hull field, then comparing wit
theory [12] theL, norm of the density for different injection methods and number of cells

Case 1 approximates the initial conditiarn 0) in the gap. Initially, the gap is empty and
there is a large vacuum electric field with no gradient. Case 2 approximates the steady
behavior of the gap for currents below the critical current. At steady state the electric fiell
smaller than the vacuum case, and the electric field gradient is large near the cathode.
of these cases will be approximated by time-independent fields to simplify the proble
Case 3, a time-dependent example, approximates the “oscillatory steady state” of a
with a current above the critical current. The fields are not self-consistent but oscill
harmonically to make the analysis tractable. The frequency and amplitude of the elec
field oscillation for the third case were obtained from a self-consistent PIC simulation w
twice the critical current injected. Efficacy of injection methods will be compared. Afte
the injection push, the particles are pushed with leap-frog as usual.

The lack of an unmagnetized example is not an oversight; because an unmagnetized
is a subset of the magnetized push, it is not done. These methods can be greatly simp
for the unmagnetized case;, ;1 is not needed for any of the pushes.

For the three test cases an analytic solution can be obtained. The equations of mc
describing the idealized cases are

xt) = L(Ex. O + y(t)By) and
m
q (52)
y) = —ax(t) Bo,

whereE(x,t) = Eo(1+ E coswpt)) + E1x, andg andm are the charge and mass of the
particle, respectively. Interms of the dimensionless variakles 2°m/(q Eg)x andf = Qt



504 CARTWRIGHT, VERBONCOEUR, AND BIRDSALL

with © = qBy/m (signed cyclotron frequency) results in

) = 1+ E coswol) + X(®) + 9P
@) = —x@),

><l:

(53)

<l:

wherewy = w)/ Q2 ande = (q/m)E;/ Q2. The solution may be written in closed form for
this equation with the initial conditions(0) = 0, vx(0) = X(0) = vxe, andvy(0) = y(0) =
Uyo-
%D = {[(vyo + D (0? — 0f) + 0’E]cogwl) — »®E cogwol)
+ (a)2 — wo)[vxoa) sin(t) — (vyo + 1)]}/( (a) - wg))
§() = {wwo(w? — w§) [~vxo + (vyo(@w® — 1) — DT + vy cOLwD)]
+ wo(éwz + (a)2 — a)g) (vyo + 1)) sin(wt)
—Eo® sin(wof) } /(w3w0 (w2 - wé)) (54)
@) = {Uxoa)(a)z — a)(z)) cogwl) + [(vyo +1) (a)z — a)(z)) + w? E] sin(wt)
— Ea)a)o Sln(a)ot)} /( (a) — wé))
by (® = {[(vyo + D (0® — w3) + w?E]cogwl) — »?E cogwol)
+ (a)2 - a)S) [vyo(a)2 —1) —1— vow Sin(a)f)]} /(a)2 (a)2 - a)g)),
wherew? = 1 — e. X(f), tx(f), andvy(f) will be compared to the numerical calculation.
Figures 6 through 8 compare the accuracy of the first push. The error is normalized by
AX, Avy, or Avy of leap-frog push; this effectively slides the vertical axes without changin

the shape of the graph. In other words, the normalization is reasonable but not uniqu
different normalization would change the magnitude but not the shape of the error. 7
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FIG. 6. The fractional error in the injected particle’s position and velocity with injection methods discusse
in the text for Case 1 (constant electric field). The Boris push with field gradients and the second-order me
are equivalent to the modified Boris push for this case; therefore, only the modified Boris push is shown.
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the second-order method; therefore, the second-order method is not shown.

horizontal axis is the time elapsed since the particle has been injected from the cath
Note that the error irvy is dominated by thek x(t) At2/24 term in the noncorrected
pushes. Figures 9 through 11 show the root mean squared truncation error averaged
the fractional time step,

1
QEND =/O €] df, (55)

for the different cases as a functionsf. The lowest-order term in the RMS error is shown
in Table Ill. The leap-frog error is for a full time step. These figures were made by keepi
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TABLE 11l
A Summary of the Order of the Injection Methods Shown in the Text for Different
Cases, the Constant Can Be Found in Appendix B

Case l Case 2 Case 3
Simple push Ju O12 Oi3
Simple Boris push g1 At Ga2At Oa3At
Modified Boris push Oa1At? g2/t OssAt
Boris push with field gradients O At? U At? OasAt
Second-order push ga1At? g At? Os3At?
Leap-frog O At? Ge2A? GesAt?

o]

10
1! FTT T T T T T T T T T T T T T : J
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—10° - e ]
210" L_.---"7" 1
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107 Leap Frog Push ]
107° G - - © Modified Boris Push J
7 ---- Fractional Time Step Boris Push
10 ——- Simple Push 1
10’8 L L L
107 107 10™ 10°
Q At

FIG. 9. The error,||E||2, in the injection method averaged over the injection time during a time step witl
injection methods discussed in the text for Case 1 (constant electric field). The Boris push with field gradie
and the second-order method are equivalent to the modified Boris push for this case; therefore, only the moc
Boris push is shown.
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FIG. 10. The error,||&],, in the injection method averaged over the injection time during a time step witl
injection methods discussed in the text for Case 2 (gradient of electric field). The modified Boris push and
fractional time step Boris push curves overlay. For this case the Boris push with field gradients is equivalent tc
second-order method; therefore, the second-order method is not shown.
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FIG. 11. The error,|€|,, in the injection method averaged over the injection time during a time step wit
injection methods discussed in the text for Case 3 (oscillatory electric field). The Boris push with field gradie
and the modified Boris push are equivalent for this case which overlay the fractional time step Boris push.

one higher truncation error than the lowest order term; because of this, these figures
be inaccurate aQ At approaches one.

The reason that injection push error is substantially larger than the leap-frog pust
Case 3 as compared to Cases 1 and 2 is that the time-dependent field is being extrapc
to a future point which incurs a larger error.

For models with cathode-field characteristics similar to one of the cases presented
using the truncation error can determine whether the injection push error is negligible.
example, assume for the moment that a fractional time step Boris push has been i
mented. Using the electric field given in Case=3,= 9.391 x 10* V/m, the gradient of
the electric field which would result in one hundred times the error over implementing t
field gradient injection push is

g22At > (100)gspAL?, (56)

wheregy, and gs, are defined in Appendix B. By reducingit this relationship will be
satisfied for somat; however, because of the other constraints in the bulk plasma requiri
At to be 1x 10712 s, then Eq. (56) is satisfied if the normalized electric field gradient i
between—2.25 (400 x 10V /m?) and —0.14 (252 x 10°V/m?). For all other values
of the electric field gradient it is more than one hundred times more accurate to use the
gradient push.

The above analysis is only the push truncation error and does not take into accoun
feedback of the coupling of the particles to the fields. The injection push is important wt
space charge is important and the error propagates through the system due to the er
the fields as well as the particles directly.

When a lower order or a non-time-centered push is used, the effects of the discrete
steps can be severe. For the examples shown here, there are gaps in particle positions be
the time steps; if the field was chosen so that it decelerated the injected particles, par
positions from different time steps would have overlapped. This is a source of “noise” wt
these particles are weighted to the grid.

For the self-consistent simulation (all the parameters are shown in Table IV) the extern
imposed magnetic field of 336G is3¥1% below the Hull field and the injected current of
16705 A/nt is 250% below the critical current. Therefore, all the current injected at th
cathode is collected by the anode.
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TABLE IV
A Summary of Parameters Used in the Self-Consistent Case

Physical parameters mwv3, /(2q) 0.5eVv
B2 336 G(|2| = 5.9086x 10 rad/s
Vo -100V
L 0.01m
J 16705 Alnt
Physical scaling Bnz 337.25G
parameters Je 1713381 A/n?
Numerical parameter AX 1.22070x 10 m

The convergence in the cell sizex is limited by the cold beam nonphysical instability
[10] proportional toAx, whereas the accuracy of the field solveAi®?. This instability
only occurs for a cold beam; we are using this cold example because we have a closed
for the solution. To reduce the effect of the cold beam instability, 8192 cells are usec
the simulation of the crossed-field diode. This adds a fixed error in the simulation ba:
on the grid error from the instability rather than the truncation error of the method. Tl
L, norm of relative errokine,c/Nn; — 1|2 is shown in Fig. 12 as a function of the time step
in the simulation. This figure shows the error decreasing for the second-order (the gen
second-order method and the field gradient fractional time step Boris push because
problem is time-independent) injection method\s, first-order (modified fractional time
step Boris push and fractional time step Boris push) injection methédand the zeroth-
order (simple injection push) injection method not decreasing. Since the size of tiexcell
is not changing there is a constant error with respect to changing the timatstépel
norm of the relative error due to the grid is approximated bylLthaorm of the simulation
run with QAt = 9.2 x 10~* to be about 44 x 107, A fit to error of the second-order
methods and first-order methods with the constant ert@d(4 10-4) from the grid is also
shown in Fig. 12 and is labeled second order fit and first order fit, respectively.
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FIG.12. Thel,norm of the relative errafiinpic/n: — 1) in the diode for injection method given in the text

for the self-consistent case. The fractional time step Boris push and the modified Boris push data points ov«
each other in the plot because they are both first order. The second-order injection and the Boris push with
gradients data points overlay each other. Both of these methods are second order because this simulatic
reached a steady state. For smaller time stepthe error is dominated by the cell sizex error which is fixed

for all the data. The fits to the data take into account the error associated with the cell size.
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4. CONCLUSIONS

Giving attention to detail, the authors have found methods that are second-order acct
for the inversion of loaded and injected distributions of particles. The inversion proces:
limited to Maxwellian distributions and fluxes, both full distributions and arbitrary cutof
at a lower and upper velocity. The second-order injection method starts for an arbitr
position and velocity at the same time and results in a position and velocity half a time s
apart, with an error consistent with the standard leap-frog integrator.

A number of common cases demonstrate sensitivity to low-order injection schemes.
have shown that using a higher order method is far more effective in obtaining a m
accurate result than decreasing the time step with a lower order method. Use of tl
methods does not significantly increase the run time of the simulation, unless the nun
of particles injected is comparable to the total number of particles in the simulation.

APPENDIX A

Effects of Discretizing Distribution and Fluxes

One of the consequences of inverting the distribution function with a finite number
points is that the Maxwellian has an effective upper cutoff. The maximum size of the ari
is determined by the desired resolution of the tail of the distribution. For exampilgayif
is the largest velocity that can be chosen, the probability that a particle lies beygnd
fv":ax f (v) dv (or fvo:axvf (v) dv for a flux). Increasing the number of bins used beyond wher
the probability of a single bin is less than the probability beyapg is ineffective because
the fraction neglected is much larger than the error made due to the numerical mett
The velocity index is constructed by choosing a pseudorandom number and multiplying
the number of bins. The velocity is computed by a linear interpolation between the ar
values indicated by the indéx.

To calculate the number of bins needed, several different measures of the error have
used to quantify the error. THecal moment erroof the nth velocity moment is the error
in each bin, which can be written as

v+AvV
LME = / 0" (foin — fanad dv, A1)

where fpi, is the normalized distribution formed by the linear interpolation of the arra
fanaliS the desired normalized distributionp is the width of the bin, and is the velocity
moment. The difference in moments integrated over the entire distribution is:

v+Av Uy
moment erroe= Z/ V" (fpin — fana) dv = / V" (fpin — fanad dv.  (A.2)
bin v Ucl

The L, norm of the difference of the moments in one bin will also be used for a meast

4 Consider calculating a new pseudorandom number for interpolation because high bits in many random nu
algorithms are more “random” than low bits. In other words, Rg¢o choose the bin and the®, to interpolate
between bins.
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FIG. 13. The absolute error in the zeroth, first, second, and third moments as a function of the number of |
for a Maxwellian flux withv, = 1 andv, = 3 (normalized bw/2uv).

of the error which will be called thivcal squared moment error

v+Av
LSME = / v2l’]( fbin - fanaDz dv. (AS)

The tolerance, T, is defined as the norm over the entire distribution:

v+Av Veu
T= E / V2" (fpin — fana)?dv = \// V2" (fpin — fana)? do. (A.4)
v vel

bin

These measures of merit can be calculated numerically. Examples of Maxwellian flux w
vo = 1 andv; = 3 are shown in Figs. 13 and 14. The LME shows the integrated err
in each bin, which mostly cancels out. In contrast the LSME does not have errors t
cancel. The error in the moments of the distribution is plotted as a function of the numi
of bins used in Fig. 13. This can be compared to the tolerance as shown in Fig. 14.°
error in the moments and the tolerance decrease as (number ofbsiage the numerical

inversion, both the tabulation and the interpolation, is second-order accurate. Hence f
Maxwellian distribution, for which the tail does not need to be resolved, a modest numl
of grids can give adequate accuracy. An easily analyzed expression for accuracy ha:s

10
107 o zeroth moment (n=0)
0 « first moment (n=1)

® . s + second moment (n=2)
10" - 4 third moment (n=3) 1
©
[}
210"

10°

10°

10 100 1000
Number of Bins

FIG. 14. The tolerance for the zeroth, first, second, and third moments as a function of the number of bins
a Maxwellian flux withv, = 1 andv, = 3 (normalized by/2vy).



PARTICLE SIMULATIONS 511

been found but minimal requirements are not difficult to meet. For a Maxwellian flux tl
corresponding graphs to Figs. 13 and 14 would have the same slope; however, the
is slightly larger for the same moment and number of bins. A few hundred points wi
interpolation should handle any Maxwellian-like (continuous with finite first and secor
derivatives) distribution.

APPENDIX B

Truncation Error Constants

This appendix list the constants for the truncation error for the methods and cases ir
body of the article; for definitions ajf’s see Table .

Case 1.
011 = (1/3+ 130% + Luyo + 1305, ) /(@15
1 /23
021 = 52\ 12°
o1 = %;ﬁ) \/ 31713+ 16312, + 120420 + 16312, (B.1)
Oe1 = 1/(12n1), and
N = \/m :
Case 2.

i = \/3 + 1302 + Llvyo + 1302/ (2v/15ny),

Oop = \/ 115+ 8€(104¢ — 73)vy0 + 115(1 + vy0)2/(24/70n),
_ /53 |€ kol

G2 = 70 3n, ’

Qa2 = (56(38929%, + 485281 + vy)?) + 9(31713+ 16317,

+ vy0(12042-+ 1631ny0)) — 6¢(1468%x0 — B(1 + vy0)
x (13518+ 1877uy0))) ? /(864v/35n,),

(B.2)

U2 = \/ezvfo + (14 €(1+ vy0))?/(12n), and

Ny = /v + (14 v%)°.

Case 3.

Grs = /6 + 3E2 + 2602 + 2200 + 26vy0/(213/30),

O3 = \/ ((230+ 16¢ (104 — 73))vZ) + 230(1+ vy0)2 + E2(115+ 198402)) /(48n3+/35),

Gaa = /266202 + B1E%03/ (6n5v/35),
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4

Os

Os

n

10
11

12

13

_ [31|Ewol
Oaz = 3B 6

s = (10e%(142642 + 389292, + 485281 + vy0)?)
+18(31713+ 16317, + vyo(12042+ 1631vy0))

) (B.3)
+ E?(285417— 633751] + 1288224))

— 126 (1468D%, — 6(1 + vy0)(13518+ 187 7vyq)
+18E?(43824% — 2253))) 7%/ (8640/70),
3= (2+ (B2 +2(v% + (1 + vy0)?))
+2¢(2+ E? 4 200 — E%0}) + E2(1— 0} + 0}))"?/nv/2), and

E2

3 = ?‘vao—l-(l‘i‘vgo)z-
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